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Quality of a numerical approximation

First examination: The Local Truncation Error (LTE)
Preparatory work:

1. Rewrite the PDE (heat equation) in operator form

Lu = 0 , with L =
∂

∂t
− ∂2

∂x2

2. FD approximation of L: For the FTCS scheme we have

Lk ,h = D+
t − D2

x .

Recall that the numerical solution solves

0 = Lk ,hwn
j =

wn+1
j − wn

j

k
−

wn
j−1 − 2wn

j + wn
j+1

h2 .
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Definition. Let Lk ,h be the difference operator approximating L. The
local truncation error (LTE) is given by the leading terms of the Taylor
expansion of Lk ,hu(xj , tn) = 0, where u satisfies Lu = 0.

In other words: Apply the finite difference operator Lk ,h of the PDE on
the exact solution u, then Taylor expand and cancel as many terms as
possible by using Lu = 0 for instance. That means
LTE = LOT

[
Lk ,hu

]
(xj , tn), where LOT [·] denotes leading order Taylor

expansion.
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Example: LTE of the FTCS scheme

Calculate the LTE of the FTCS scheme of the heat equation:

LTE = Lk ,hu(xj , tn)

=
u(xj , tn + k)− u(xj , tn)

k

−
u(xj − h, tn)− 2u(xj , tn) + u(xj + h, tn)

h2
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k
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u(xj − h, tn)− 2u(xj , tn) + u(xj + h, tn)

h2

=
1
k

(
u + kut +

1
2

k2utt + · · · − u
)∣∣∣∣

xj ,tn

− 1
h2

(
u − hux +

1
2

h2uxx − 1
3!

h3uxxx +
1
4!

h4uxxxx − 2u+

+u + hux +
1
2

h2uxx +
1
3!

h3uxxx +
1
4!

h4uxxxx

)∣∣∣∣
xj ,tn
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+u + hux +
1
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h2uxx +
1
3!

h3uxxx +
1
4!

h4uxxxx

)∣∣∣∣
xj ,tn

= ut(xj , tn) +
1
2

kutt(xj , tn)− uxx(xj , tn)−
1

12
h2uxxxx(xj , tn) + . . . .
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Since u satisfies the heat equation ut − uxx = 0, we are left with

LTE =
k
2

utt −
h2

12
uxxxx +O(k2,h4) .

By using again the assumption on smoothness and the heat equation,
that is,

utt =
∂

∂t
ut =

∂

∂t
uxx =

∂2

∂x2 ut =
∂2

∂x2 uxx = uxxxx ,

we can rewrite the LTE as

LTE =

(
k
2
− h2

12

)
uxxxx +O(k2,h4) =

h2

2

(
r − 1

6

)
uxxxx +O(k2,h4) ,

where r = k/h2. Hence, if r = 1/6, then the O(h2) terms vanish and
the LTE becomes O(k2,h4). The leading term of the LTE (in green
above) is first order accurate in time and 2nd order accurate in space.
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Consistency and order of a scheme

Definition. Let LTE be the local truncation error of a scheme. A
scheme is said to be consistent, if LTE → 0 as h, k → 0.
Moreover, a scheme is said to be of order p in space and q in time, if
the LTE is of order O(hp, kq).

Remark. If r is a fixed value, then we can rewrite the LTE as O(hp) as
shown above, i.e., the FTCS scheme is 2nd order if r ̸= 1/6 and 4th
order if r = 1/6.
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FTCS scheme in matrix form

Basic definitions:
• Vector containing numerical solutions wn

j at internal grid points
j = 1,2, . . . , J − 1 at time tn

wn =


wn

1
wn

2
...

wn
J−1


• Vector of initial values (known)

w0 = u0 =


F (x1)
F (x2)

...
FJ−1


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These definitions allow us to rewrite the FTCS scheme

wn+1
j = rwn

j−1 + (1 − 2r)wn
j + rwn

j+1, j = 1, . . . , J − 1 ,

as follows

wn+1 = Swn + bn ,

where

S =



1 − 2r r 0 . . . . . . 0

r 1 − 2r r 0
. . .

. . .

0 r 1 − 2r r 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0 r 1 − 2r r

0
. . .

. . . 0 r 1 − 2r


, bn =



rα(tn)
0
...
...
0

rβ(tn)


.
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Applying now recursively the matrix FTCS scheme

wn+1 = Swn + bn

= S(Swn−1 + bn−1) + bn

= S2wn−1 + Sbn−1 + bn ,

gives by repeating back to w0 (or by induction)

wn+1 = Sn+1w0 + Snb0 + Sn−1b1 + · · ·+ Sbn−1 + bn ,

where Sn := S × S × S × · · · × S︸ ︷︷ ︸
n times

.

Remark. If we have homogeneous Dirichlet BC, i.e., α(t) = β(t) = 0,
then bn = 0 for all n and hence

wn+1 = Sn+1w0 .
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Notation in matlab

Mathematical (analytical) notation:
The spatial index j goes over the spatial grid points 0,2, . . . , J
(including boundary points).

Notation adapted to matlab:
The spatial index j goes over the spatial grid points 1,2, . . . , J + 1
(including boundary points).

Sparse matrix:
Declare the matrix S as sparse in matlab (as most elements are zero)

S = sparse ( diag ((1−2∗ r )∗ ones ( J−1 ,1)) . . .
+diag ( r ∗ones ( J−2 ,1) ,1)+ diag ( r ∗ones ( J−2 ,1) ,−1) ) ;

“sparse” squeezes out any zero elements (type “help sparse” in matlab
shell for more information)
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Summary of learning targets:

1. What means LTE and how can it be obtained for a finite difference
scheme?

2. How does the finite difference operator for the FTCS scheme with
respect to all internal grid points look like? Does it show a special
structure?

3. Can you define diagonal matrices in matlab? How can one
prevent the storage of zeros?

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 4 14/ 14



Summary of learning targets:

1. What means LTE and how can it be obtained for a finite difference
scheme?

2. How does the finite difference operator for the FTCS scheme with
respect to all internal grid points look like? Does it show a special
structure?

3. Can you define diagonal matrices in matlab? How can one
prevent the storage of zeros?

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 4 14/ 14



Summary of learning targets:

1. What means LTE and how can it be obtained for a finite difference
scheme?

2. How does the finite difference operator for the FTCS scheme with
respect to all internal grid points look like? Does it show a special
structure?

3. Can you define diagonal matrices in matlab? How can one
prevent the storage of zeros?

M. Schmuck (Heriot-Watt University) Numerical Methods for PDEs, Lecture 4 14/ 14


	Local Truncation Error (LTE) analysis
	Example: Heat equation
	Matrix formulation of the FTCS scheme
	Matlab specific notation

